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Abstract. Multiple Species Weighted Voting (MSWV) is a genetics-based
machine learning (GBML) system with relatively few parameters that combines
N  two-class classifiers into an N -class classifier. MSWV uses two levels of
speciation, one manual (a separate species is assigned to each two-class
classifier) and one automatic, to reduce the size of the search space and also
increase the accuracy of the decision rules discovered. The population size of
each species is calculated based on the number of examples in the training set
and each species is trained independently until a stopping criterion is met.
During testing the algorithm uses a weighted voting system for predicting the
class of an instance. MSWV can handle instances with unknown values and
post pruning is not required. Using thirty-six real-world learning tasks we show
that MSWV significantly outperforms a number of well known classification
algorithms.

1   Introduction

Data classification, as a supervised learning task, has been one of the most researched
subjects and the progress in this area has translated into a large variety of supervised
learning algorithms. Among the genetics-base machine learning (GBML) systems, the
more successful ones have been the learning classifier systems (LCS) with XCS being
the main example [10, 11]. While Multiple Species Weighted Voting (MSWV)
algorithm qualifies as a GBML because of its use of populations of individuals and
two genetic operators, it is not an LCS.

The use of N  2-class classifiers in N -class classification tasks, that MSWV uses
(discovered independently), is also the standard method used by Support Vector
Machines [9]. There are also other algorithms using ( 1)/2N N −  SVM classifiers

(one for each pair of classes) for an N -class classification task [5].
In section 2 we introduce a terminology and present a background of the

classification theory while in section 3 we present the important techniques used by
the algorithm. In section 4 we present the experimental results and compare them with
well known competing techniques followed by conclusions in section 5.

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN ----------------------------------------Dateioptionen:     Kompatibilität: PDF 1.2     Für schnelle Web-Anzeige optimieren: Nein     Piktogramme einbetten: Nein     Seiten automatisch drehen: Nein     Seiten von: 1     Seiten bis: Alle Seiten     Bund: Links     Auflösung: [ 2400 2400 ] dpi     Papierformat: [ 595 842 ] PunktKOMPRIMIERUNG ----------------------------------------Farbbilder:     Downsampling: Ja     Berechnungsmethode: Durchschnittliche Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     Bitanzahl pro Pixel: Wie Original BitGraustufenbilder:     Downsampling: Ja     Berechnungsmethode: Durchschnittliche Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: << /QFactor 0.5 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder:     Downsampling: Ja     Berechnungsmethode: Durchschnittliche Neuberechnung     Downsample-Auflösung: 1800 dpi     Downsampling für Bilder über: 2700 dpi     Komprimieren: Ja     Komprimierungsart: CCITT     CCITT-Gruppe: 4     Graustufen glätten: Nein     Text und Vektorgrafiken komprimieren: NeinSCHRIFTEN ----------------------------------------     Alle Schriften einbetten: Ja     Untergruppen aller eingebetteten Schriften: Nein     Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten:     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     Nie einbetten: [ ]FARBE(N) ----------------------------------------Farbmanagement:     Farbumrechnungsmethode: Farbe nicht ändern     Methode: StandardGeräteabhängige Daten:     Einstellungen für Überdrucken beibehalten: Ja     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja     Transferfunktionen: Anwenden     Rastereinstellungen beibehalten: JaERWEITERT ----------------------------------------Optionen:     Prolog/Epilog verwenden: Ja     PostScript-Datei darf Einstellungen überschreiben: Ja     Level 2 copypage-Semantik beibehalten: Ja     Portable Job Ticket in PDF-Datei speichern: Nein     Illustrator-Überdruckmodus: Ja     Farbverläufe zu weichen Nuancen konvertieren: Ja     ASCII-Format: NeinDocument Structuring Conventions (DSC):     DSC-Kommentare verarbeiten: Ja     DSC-Warnungen protokollieren: Nein     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja     EPS-Info von DSC beibehalten: Ja     OPI-Kommentare beibehalten: Nein     Dokumentinfo von DSC beibehalten: JaANDERE ----------------------------------------     Distiller-Kern Version: 5000     ZIP-Komprimierung verwenden: Ja     Optimierungen deaktivieren: Nein     Bildspeicher: 524288 Byte     Farbbilder glätten: Nein     Graustufenbilder glätten: Nein     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja     sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments true     /DoThumbnails false     /CompressPages false     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize false     /ParseDSCCommentsForDocInfo true     /EmitDSCWarnings false     /CalGrayProfile ()     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue true     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.2     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Average     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Average     /DetectBlends true     /GrayImageDownsampleType /Average     /PreserveEPSInfo true     /GrayACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ColorACSImageDict << /QFactor 0.5 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /LeaveColorUnchanged     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 300     /EndPage -1     /AutoPositionEPSFiles true     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 1800     /AutoFilterGrayImages true     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 300     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 595.276 841.890 ]     /HWResolution [ 2400 2400 ]>> setpagedevice



1264         A.F. Tulai and F. Oppacher

2   Background

A datasetD  is a subset of ×X C  where X is the input space, also called the feature
space, and C is the class space. In general 1X Xn= × ×X but in many practical

applications iX R=  so nR=X and the feature space is n -dimensional.

1{ , , }Nc c= …C , usually a discrete set of small cardinalityN , is the class space. A

record (instance or sample) of a data set, is a point 1{ , } { , , , }i n ip c x x c= = …x
where 1,{ }j j nx =  are the feature values and ic is the class of the record (sometimes

called the record tag).
Classification is the problem of predicting the value of an output variable y ∈ C

based on a given value of the input variable 1{ , , }nx x= …x .

An attribute is a Boolean valued function : {0,1}i ih X → . A decision rule r  is a

function : {0,1}nr → C usually built as a conjunction or disjunction of attributes.

Decision rules are used in classification and they are usually constructed by a learning
algorithm from a training set of L points { , }, 1,i i ip y i L= =x  of known input and

output values. For a given point { , }icx with 1{ , , }nx x= …x  a correct classification

occurs when 1 1 ˆ({ ( ), , ( )}) (x)n n ir h x h x y c= =… , otherwise ( (̂ ) iy c≠x ) it is

considered an error. MSWV uses decision trees with internal nodes storing Boolean
valued attributes and the leaf nodes containing a tag. Because the path from the root
node to a leaf node is a conjunction of Boolean attributes, a decision tree can be seen
as a disjunction of a limited number of conjunctions.

In general almost all learning algorithms are procedures for obtaining estimates

1{ ( )}Nif x  of the set of conditional probabilities:

1{ ( ) Pr( | )}Ni if x y c x= = (1.1)

There are two methods for obtaining these probability estimates [5], the density
estimation approach and a regression methodology. The density estimation approach
uses Bayes' theorem. A well known example of a classification algorithm using the
density estimation paradigm is Naïve Bayes [6] but as referenced in [5] there are
many others.

The second approach attempts to directly estimate the conditional probabilities
(1.1). Examples of algorithms using the regression methodology are the decision tree
induction methods [4, 8], the nearest neighbor methods [1] and others. MSWV also
belongs to this class of algorithms. In the case of the algorithms using decision tree
representations, f would be nothing else but a function built on the Boolean valued

attributes ( )h x (like a decision rule). MSWV uses a GA to modify these decision trees

and search for those trees that contain the best decision rules r  giving us the best

probability estimates 1
ˆ{ ( )}Nif x .

The predicted class î  may be obtained from the probability estimates using:

1
ˆ ˆ( ) arg max ( )i ii N
i L f

≤ ≤
=x x (1.2)
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Very often 1iL =  (see [5]) which is equivalent to assigning the predicted class to be

the most probable for a given x . In section 3.7, the equivalent of equation (1.2) will
be given by equation (1.6) showing how the decision is made in the case of MSWV.

3   Algorithm Characteristics

In this section we detail the main characteristics of the MSWV system.

3.1 Representation and Species Definition

MSWV uses populations of individuals to create 2-class classifiers. The genotype and
phenotype of an individual is a decision tree with internal nodes carrying Boolean
valued attributes and leaf nodes carrying one of two possible class labels. What
distinguishes MSWV from other algorithms using decision trees is the constraint we
impose that each internal node must carry a Boolean valued attribute constructed from
a feature distinct from the other internal nodes in the tree. This restriction implies that
a decision tree can have a maximum of n internal nodes (wheren , following the
terminology in section 2, is the number of features) and a maximum of 1n +  leaf
nodes. Because the path from the root node to a leaf node represents a decision rule
(as a conjunction of Boolean valued attributes) each decision tree can carry a
maximum of 1n + decision rules. This restriction significantly reduces the size of the
search space.

The decision trees are randomly initialized. Each internal node stores a Boolean
valued attribute as a triplet ( #, , )feature featuretype values . The possible

features and the attribute functions built on them are:
• Boolean features (type 1). { , }iX a b= . An internal node stores ( ,1, )i v  with

{ , }v a b∈ , ( ) 1i i ih x x v= ⇔ = .

• Set features (type 2). 1{ , }ki i iX x x= . An internal node stores ( ,2, )i A
with iA X⊆ , ( ) 1j j

i i ih x x A= ⇔ ∈

• Numerical features (Integer type 3, Floating point type 4).
min max[ , ]i i iX x x= , |ix Z R∈ . A node stores 1 2( , 3 | 4,{ , })i v v ,

1 2[ , ] iv v X⊆ , 1 2( ) 1 [ , ]i i ih x x v v= ⇔ ∈

Each 2-class classifier is represented by a population of decision trees with leaf nodes
carrying one of two possible class labels, either a class ic ∈ C or the "don’t know"

class that we tag as "?" (i.e. ? { }iC c= − ). A population of individuals recognizing

the same two classes { , ?}ic forms a species, so each species is a 2-class classifier.

For a N-class classification task, MSWV creates N species.
The training is done using the 1-v-r (one-versus-rest) method. For a given training

set T  the N classes induce a partition 1 NT T T= ∪ ∪… with iT containing only the

records tagged with ic . The i-th species (corresponding to the i-th 2-class classifier)
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is trained with the examples in iT as positive examples and all other examples

( iT T− ) as negative examples (treated as the "don't know" class).

The size of the i-th species population is automatically calculated with the formula:

20 ( )/2 20

200 ( )/2 200

( )/2

i

i i

i

if card T

m if card T

card T otherwise

 <= >

(1.3)

The reason behind using a population size of ( )/2icard T is linked to the

assumption that in the worst case the training subset iT may contain just 2 examples

for each possible classification rule that needs to be discovered in which case the
maximum number of rules the  i-th species should discover (although there is no
guarantee they will be discovered) is ( )/2icard T . The upper limit of 200 on the

population size is imposed by computational considerations. The lower limit of 20 is
imposed by training time considerations and will be discussed in section 3.6.

3.2 Mutation Operators

In its current version MSWV uses only mutation and selection (described in the next
section). Every generation all the individuals of a species (the species could be trained
independently and in parallel) are mutated with probability 1, followed by selection.
MSWV implements 6 mutation operators but with equal probability uses only one
when mutation is applied. The six mutation operators are shown in Table 1. The term
"randomly" refers to a uniform distribution random variable.

3.3 Rule Discovery and Automatic Speciation

One can classify the decision rules into weak and strong rules depending on whether
they cover a small or a large number of training examples. There are datasets
governed by one (or a very small number of) strong classification rule(s) in which
case placing all the individuals in one large population and having them compete with
each other by applying the selection operator seems to be the right way to go. Copies
of the fittest individual will propagate through the population of decision trees
resulting in an accelerated search for the strongest classification rule.

On the other hand, in general, the training examples are covered by a mixture of
strong and weak rules [3]. This would suggest that following a simple hill climbing
strategy by applying selection only between a parent and its offspring (we call this
restricted selection) while slowing down the process of rule discovery, would ensure
that both the strong and the weak rules were pursued by the evolving population.
    MSWV achieves a compromise between the two extreme cases. Initially, each
species starts with a population of hill climbers, individuals that mutate and use
restricted selection to maintain the diversity of the evolved rules. Periodically the
algorithm checks for similar individuals and places them together forming subspecies.
The similarity is defined not in terms of genetic makeup but in terms of proficiency in
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Table 1. The mutation operators used by MSWV.

Operator Description

Add node Adds a new internal node (and a new attribute)

Remove node Randomly selects a leaf node and removes it and its
parent node

Swap two
leaves

Randomly selects a pair of sibling leaves and swaps
them.

Swap internal
nodes

Randomly selects two internal nodes and swaps them

Swap two
branches

Randomly selects two internal nodes and swaps the sub-
trees headed by them

Boolean features: the value used in the node is replaced
by its complement

Set features: With equal probability either adds one
element to the set stored in the node or removes one

Attribute
change

Numerical features: Randomly either shift the range up |
down or shrink | expand the range by a random gain

classifying positive and negative examples. The speciation process is formally
described as follows. Let iS represent the set of all individuals in speciesi , trained

with positive examples from the set iT and negative examples from the set iT T− .

We introduce a pre-order relation on the elements of iS . If 1 2, is s S∈ are two

individuals from species i  and by 1( )i is T T⊆ , 1( )i is T T T T− ⊆ − , 2( )i is T T⊆
and 2( )i is T T T T− ⊆ −  we denote the sets of positive and negative examples

correctly classified by 1s  and 2s we say that

1 2 1 2 1 2( ) ( ) & ( ) ( )i i i is s s T s T s T T s T T≥ ⇔ ⊇ − ⊇ − (1.4)

In other words, an individual is greater than or equal to another individual (from the
same species) if and only if the first individual can correctly classify all the positive
and all the negative training examples the second individual classifies. It can be easily
shown that the relation "≥ " is reflexive and transitive but not antisymmetric. MSWV
uses the pre-order relationship on the elements of iS to create subspecies of

individuals that are allowed to compete with each other and accelerate the search for
specific decision rules. Because it is computationally intensive this operation (that we
call automatic speciation) is not performed every generation but at regular intervals.
All the experiments described in section 4 have used a speciation period of 50
generations. When the speciation operation is performed the second (or subsequent)
time subspecies may already exist in the population. In this case only the fittest
individuals from each subspecies participate in the speciation process in which case
the pre-order relation between individuals will result in mergers between their
respective subspecies. The use of the fittest individual of a subspecies is justified by
the lack of diversity that characterizes the subspecies, as a result of full selection
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pressure. We would like to point out that individuals of a subspecies may also be
allowed to mate if an effective crossover operator is devised in the future.

3.4 Rule Confidence and Rule Weight

As previously mentioned, a decision tree encodes as many decision rules as there are
leaf nodes in the tree. Although not mentioned in section 3.1, associated with each
leaf there is some additional information built during the learning phase.

• A counter P that counts all the positive examples that have exercised the
tree path (i.e. decision rule) ending at this leaf.

• A counter N that counts all the negative examples that have exercised the
tree path ending at this leaf.

• A rule confidence coefficient calculated, following training, as follows:
P

P N
µ =

+
(also called the true positive rate) for leaves tagged with ic

N
P N

µ =
+

(also called the true negative rate) for leaves tagged with ?

The rule confidence coefficients are used to weight the individual vote during the
testing phase (see section 3.7) and remove the need for post pruning.

Datasets often contain instances with unknown values, and learning algorithms
must be able to deal with them with minimal degradation of performance.

MSWV treats the unknown (missing) values similar but not identical to other
practical learning schemes like C4.5 [8] and PART [4]. When a record is evaluated
(during training or testing) a path weight variablepW , initially set to 1, is associated
with the path taken by the record through the decision tree. Associated with each
internal node of a decision tree there are 4 variables ( , , , )l r l rp p n n  counting how

many positive or negative examples have gone left or right. If an instance cannot be
assigned deterministically to a branch because of an unknown value we assume that it
may go on both branches and consequently two paths are created from that node
down. The path weights of these two paths are updated using the 4 variables stored in
the node with separate equations depending on whether we are testing or training.
During testing, the left and right path weight are given by lpW ρi and rpW ρi  where

( )/( )l l l l r l rp n p p n nρ = + + + + , ( )/( )r r r l r l rp n p p n nρ = + + + +
During training after calculating the path weight updating factors lρ  and rρ we also

have to (on-line) update the variables( , )l rp p or( , )l rn n :

/( )l l l rp p pρ = + , /( )r r l rp p pρ = + , l l lp p pW= + , r r rp p pW= +
/( )l l l rn n nρ = + , /( )r r l rn n nρ = + , l l ln n pW= + , r r rn n pW= +

Because a path from the root node to a leaf node defines a rule, a path weight is
nothing else but a rule weight. In section 3.5 we show how the path weights (or rule
weights) are used during training (in fitness calculation) and in section 3.7 we show
how they are used during testing (in vote weighting).
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3.5 Individual Fitness Calculation

The fitness of an individual is calculated only once, when the individual is born, using
the training data set. When during the process of evaluating a decision tree shaped
chromosome on a training example a leaf node is reached the following updates take
place. If the leaf has a tag ic  that matches the class of the example we increment the

positive examples counterP and give a reward, otherwise we increment the negative
examples counter N and give no reward.  If the leaf is tagged " ? " and the example is
tagged ic we increment the positive examples counter P and give no reward,

otherwise we increment the negative examples counter N and give a reward.
The reward score for correctly classifying an example depends on the path weight.

However we need to correct for the imbalance that may exist in the data set. If a class
has very few representatives we need to give a higher reward for correctly classifying
samples from this class. Consequently, the reward for correctly classifying a positive
example iTx T∈ ⊂  is ( ) ( )/ ( )p i

all paths
r x pW card T card T= ∑ i . The reward for

classifying a negative example ix T T∈ −  (at a leaf node tagged with the unknown

class "?") is given by the equation: ( ) ( )/ ( )n i
all paths

r x pW card T card T T= −∑ i .

The sum over all paths is required for handling unknown values as explained in
section 3.4. With these definitions, the fitness of an individual is S∈  is given

by: ( ) ( ( ) ( ))/2
i i

i p n
x T x T T

g s r x r x
∈ ∈ −

= +∑ ∑  (therefore ( ) [0, ( )]ig s card T∈  ).

One of the major concerns in machine learning is the generalization power of the
rules learned. To encourage the emergence of short rules with a high generalization
potential, MSWV reduces an individual's fitness by a penalty factor defined as:
0.0005( 1)n Lδ = −  where n is the number of internal nodes in the tree (and distinct

features used in the decision tree), L is the number of records in the training data set
and the constant 0.0005 has been experimentally determined. Assuming a training
dataset of 1000 instances, this small penalty factor implies that adding a new internal
node to a decision tree must be justified by an increase in fitness greater than 0.5.

3.6 Training Time

Unlike other GBML systems that use a fixed, experimentally determined training time
parameter [2, 3], MSWV uses a dynamic stopping criterion. The reasons why a
stopping criterion is superior to a fixed training time method are:

− if the training phase stops too early the achieved rule accuracy may be too low
− a training phase that is too long may encourage data overfitting
− the "optimum" training time may greatly vary from dataset to dataset
− it improves the algorithm efficiency (stopped species do not consume CPU time)

Every ∆  generations MSWV calculates the average fitness of all the individuals
of a species. If the average fitness of all individuals of species i at time t j= ∆  is

given by ( )ig j∆ , the training will stop at time j∆ if the following condition is met
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1

( ) (( 3) )
0.02max( ( ) (( 1) ))

3
i i

i ik

g j g j g k g k
≥

∆ − − ∆ ≤ ∆ − − ∆ (1.5)

MSWV system uses a value of 10 for∆ . Put in words, a species is evolved until
the increase in the (smoothed over2∆ ) average fitness of its individuals falls below
2% of the highest jump in average fitness over∆ generations. Because the highest
jump in fitness usually occurs in the first ∆ generations for almost all datasets it is
reasonable to ensure the same behavior in the case of those datasets that have a very
small number of examples for a certain class (these datasets are very rare but they do
exist in the real-world). It is because of these special cases that we established a lower
limit on population of 20 (see section 3.1) to increase the probability of positive
evolutionary changes and a non zero average fitness increase early in the training.

3.7  Testing

Given an instance x  from a testing dataset with N classes, MSWV uses a voting
scheme to predict its class. Because the individuals in a subspecies are all very similar
(due to the strong selection pressure) only the fittest individual in the subspecies is
allowed to vote. Experiments performed with a very large number of datasets have
shown there is no difference in results if all are allowed to vote or only the best is
allowed to vote (but this method is more efficient). Let's assume species i  finishes
the training phase, with its population distributed in iM subspecies. Let's also denote

by M the maximum number of subspecies in any of the N species (i.e.

1,
max ( )ii N

M card M
=

= ). The outcome of the weighted voting process is given by the

following formula (also see equation 1.2 for reference):

1 1
(̂ ) arg max ( )

( )

iM

iji N i j

Mi v
card M≤ ≤ =

= ∑x x (1.6)

where ( )ijv x is the confidence and path (rule) weighted vote of the fittest individual

from the j -th subspecies of the i -th species and is given by the formula:

1( "?")
1

( ) ( 1) ,1( )
0

leafTag
ij

all paths

if x true
v pW x

if x false
µ==

 == − =  =
∑x i (1.7)

whereµ is the confidence coefficient calculated as explained in section 3.4, pW is

the path weight and the summation over all possible paths is required for handling
instances with unknowns (as explained in section 3.4). Confidence weighting removes
the need for post pruning (for example, the vote of a rule with confidence 0, is 0).

4   Experimental Results

The performance of MSWV has been evaluated on a set of thirty-six standard datasets
available from UCI at: www.ics.uci.edu/~mlearn/MLRepository.html. The thirty-six
datasets used for the study exhibit a large variety of characteristics in terms of number
of instances, number and diversity of features, number of classes, missing feature
values, etc. The datasets and their characteristics are listed in Table 2.
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Table 2. The datasets used for experiments (unknown values given as a percentage of total).

Dataset Id Inst Unknown #feat #nom #num #class
Audiology aud 226 2.0 69 69 24
Balance bal 625 - 4 4 3
Breast-w brw 699 0.3 9 9 2
Bupa bpa 345 - 6 6 2
Contraceptive cmc 1473 - 9 4 5 3
Credit-austral. cra 690 0.6 15 9 6 2
Credit-german crg 1000 - 20 13 7 2
Glass gls 214 - 9 9 6
Heart-c h-c 303 0.2 13 7 6 2
Heart-h h-h 294 20.5 13 7 6 2
Hepatitis hep 155 5.6 19 12 7 2
Ionosphere ion 351 - 34 34 2
Iris irs 150 - 4 4 3
Labor lbr 57 35.7 16 8 8 2
Pima-indians pmi 768 - 8 8 2
Primary-tumor prt 339 3.9 17 17 22
Sonar snr 208 - 60 60 2
Soybean soy 683 9.8 35 35 19
Vehicle veh 846 - 18 18 4
Vote vot 435 5.6 16 16 2
Vowel vow 990 - 13 3 10 10
Wine wne 178 - 13 13 3
Yeast yst 1484 - 8 8 10
Zoo zoo 101 - 16 16 7
Adult ADL 48842 0.9 14 8 6 2
Hypothyroid HTH 3772 5.5 29 22 7 4
Kr-vs-kp KRK 3196 - 36 36 2
Led (10%noise) LED 6000 - 7 7 10
Letter LTT 20000 - 16 16 26
Mushrooms MUS 8124 1.4 22 22 2
Optical-digits ODG 5620 - 64 64 10
Satellite-image SAT 6435 - 36 36 6
Segment SEG 2310 - 19 19 7
Sick SIC 3772 5.5 29 22 7 2
Splice SPL 3190 - 60 60 3
Waveform+noise WVF 5000 - 40 40 3

The performance of MSWV is compared to six other learning algorithms: NB [6],
IB1 and IB3 (IBk or Instance-Based learner [1] that we use with k=1,3) , C4.5
(revision 8, an induction tree algorithm, [8]) , PART (an algorithm for inferring rules
by repeatedly generating partial decision trees, [4]) and SMO (Sequential Minimal
Optimization, a SVM classifier system [7]), all of them run using the Weka v3.4
package [12] available at: www.cs.waikato.ac.nz/ml/weka

The datasets are divided in two groups, twenty-four small (under 2000 instances)
datasets and twelve large (over 2000 instances) datasets.
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On the group of small datasets (lower case IDs) the comparison between classifiers
is based on averaging ten ten-fold cross-validation runs. To test the statistical
significance of the differences between classifiers on this group of datasets we used a
paired two-sided t-test at 99% confidence level.

On the group of large datasets (upper case IDs) the comparison is based on the
holdout estimate, where 33.3% of the instances are used for training and 66.6% are
used for testing. The statistical significance of the differences between classifiers is
performed using a test for the differences of two proportions at 99% confidence level.
The large datasets have been shuffled offline and we have ensured that all
classification systems have used the same partitions for training and testing.

Finally, the paired Wilcoxon signed rank test is used to calculate the statistical
significance of the overall observed differences between two learning systems.

The accuracy rates (given as percentage of correct classifications) of the
classification systems are summarized in Table 3. Results for the six learning systems
used in the study are marked with ○ if they show significant improvement over the
corresponding results for MSWV, and with ● if they show significant degradation.

The results presented in Table 3 can serve as basis for several observations. The
first observation is that on this set of thirty-six datasets MSWV significantly
outperforms 4 other classification systems (NB, IB1, C4.5 and PART), slightly
outperforms IB3 and it is outperformed by SMO. This conclusion is based on the
results presented in the row labeled W-L-T (wins-losses-ties) and also from the
outcome of the paired Wilcoxon signed rank test as shown in the row labeled
"Confidence". For example, MSWV significantly outperforms C4.5 on 17 datasets
and it is significantly outperformed by C4.5 on 7 datasets. Using the results of the
Wilcoxon test we can say that on this group of datasets MSWV improves C4.5 with
97.6% confidence but it is also improved by SMO with 54.7% confidence. The
comparison with the other classification systems is done similarly.

Using a similar methodology and the experimental results on thirty datasets, [2]
reported that XCS and their own UCS (both are Learning Classifier Systems) were
outperformed by C4.5, PART and IB3. The SMO classifier used in our study could
handle nominal and numerical valued features (different from the version used in [2]).
We can indirectly conclude that MSWV may outperform XCS and UCS on a
subgroup of datasets.  In addition to that, MSWV does not exhibit the deterioration in
performance reported in [2] on datasets with high number of classes like aud, soy or
vow (see Table 2 for IDs and Table 3 for MSWV's results).

As shown in Table 3, MSWV is outperformed by all other six classifier systems on
one single dataset, ADL that happens to be the dataset with the highest number of
instances. Future experiments on datasets with very large number of instances (>
20,000) will help clarifying whether the performance degrades for very large datasets.

MSWV has outperformed all other classifiers on two datasets, gls and yst that have
continuous numerical features and more than two classes. This may suggest that either
MSWV does particularly well on this kind of datasets or, alternatively, the
performance of the other six classifiers on datasets with continuous numerical features
does not match their performance on datasets with integer or nominal features (this
second alternative may be particularly true for the SMO classifier).
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Table 3. Accuracy rates (%) of the classifiers used in the study. The row labelled W-L-T
counts the wins-losses-ties of one-on-one comparison between MSWV and another classifier.
The last two rows show the z-value and the confidence level of the Wilcoxon signed rank test.

The performance of MSWV on two large datasets that have noise artificially
added, LED and WVF, is also good, as shown in Table 3.
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5   Conclusions

MSWV uses a GA to evolve populations of decision trees (each population a 2-class
classifier) but uses a calculated population size and a training stopping criterion rather
than some fixed values. Other variables (like speciation period or fitness averaging
interval) have been kept constant in all our experiments supporting the claim that
MSWV is a relatively parameter free GBML system. An innovative speciation
mechanism ensures that strong and weak rules are pursued by the evolving population
at the best pace possible. The restriction that the decision tree be constructed on
attributes built on distinct features clearly helps the search but seems to introduce a
limit on the complexity of the decision rules that can emerge in such trees and to
negatively impact the classifier accuracy. This potential problem is successfully
compensated by the statistical power of a voting system, making classification a
collective task. Tested on a large number of real world classification tasks the
algorithm significantly outperforms a number of well known classification
algorithms. MSWV performs well on noisy datasets, can handle records with
unknown values and does not require post pruning. Based on the experimental results
we believe that at this moment MSWV is the best GBML system reported in the EC
literature.
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